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ABSTRACT

Escherichia coli has three DNA polymerases impli-
cated in the bypass of DNA damage, a process called
translesion synthesis (TLS) that alleviates replication
stalling. Although these polymerases are specialized
for different DNA lesions, it is unclear if they inter-
act differently with the replication machinery. Of the
three, DNA polymerase (Pol) II remains the most enig-
matic. Here we report a stable ternary complex of Pol
II, the replicative polymerase Pol III core complex and
the dimeric processivity clamp, �. Single-molecule
experiments reveal that the interactions of Pol II and
Pol III with � allow for rapid exchange during DNA
synthesis. As with another TLS polymerase, Pol IV,
increasing concentrations of Pol II displace the Pol III
core during DNA synthesis in a minimal reconstitu-
tion of primer extension. However, in contrast to Pol
IV, Pol II is inefficient at disrupting rolling-circle syn-
thesis by the fully reconstituted Pol III replisome. To-
gether, these data suggest a �-mediated mechanism
of exchange between Pol II and Pol III that occurs
outside the replication fork.

INTRODUCTION

DNA synthesis occurs in many different cellular contexts,
from high fidelity genome duplication at replication forks
to error-prone synthesis across from sites of DNA damage.
Most organisms have multiple polymerases specialized for
particular tasks, requiring proper polymerase selection and
exchange.

Escherichia coli, which serves as a powerful model for de-
ciphering the mechanism of polymerase exchange, has five

DNA polymerases, polymerase (Pol) I through Pol V. The
majority of chromosomal DNA synthesis on the leading
and lagging strands is performed by Pol III, a heterotrimeric
complex of a polymerase subunit (�), a proofreading sub-
unit (�) and a third subunit (�) that moderately stimulates
proofreading activity (1). The complex (���) is commonly
referred to as the Pol III core. Pol I functions on the lagging
strand during Okazaki fragment maturation (2).

E. coli additionally has two Y-family DNA polymerases,
Pol IV and Pol V, which are regulated by the SOS DNA
damage response. Both Pols IV and V lack proofreading do-
mains and can perform translesion synthesis (TLS) across
from bulky DNA lesions, although with different speci-
ficities (3). While these polymerases can alleviate damage-
induced replication stalling, as a consequence of their TLS
activity they have higher error rates on undamaged DNA
relative to Pols I and III (3).

Although Pol II was the second E. coli DNA polymerase
to be discovered, its cellular role remains enigmatic (4). It is
encoded by the gene polB, which is non-essential (5). Since
Pol II is regulated by the SOS response and has lesion by-
pass activity, it is considered to be a TLS polymerase (6–
9). In contrast to Pols IV and V, however, it is a B-family
DNA polymerase with 3′–5′ proofreading activity, two clas-
sifications that are shared by high fidelity replicative poly-
merases in other organisms (6,10,11). Additionally, lesion
bypass by Pol II is inefficient, with 20% bypass of an aba-
sic site analog over 30 min, for example; in comparison, Pol
IV bypasses >90% of the cognate N2-furfuryl-guanine le-
sion over 15 min (12–14). Additionally, polB mutant cells
have minor or negligible survival defects when treated with
DNA damaging agents (15,16). Other activities attributed
to Pol II are stationary phase adaptation (17,18) and proof-
reading misinsertion errors, especially on the lagging strand
(19).
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Figure 1. Complexes of Pol II (90 kDa), Pol III core (166 kDa) and the � dimer (81 kDa) were observed by incubating combinations of the three proteins,
separating by size-exclusion chromatography, and blotting against Pol II in fractions. When chromatographed alone, the majority of Pol II was localized
to fractions 50–52. In the presence of � clamp, 54.0% (± a range between replicates of 4.0%) of the Pol II was shifted to fractions 44–49. When incubated
with Pol III core, 33.8% (± 0.6%) of the Pol II shifted to fractions 47–49, and in the presence of Pol III core and � clamp 61.7% (± 12.4%) of the Pol II
was shifted to fractions 41–49, co-migrating with the majority of the Pol III core–� complex (Supplementary Figure S1).

As with the other E. coli polymerases, processive DNA
synthesis by Pol II requires an interaction with the � slid-
ing clamp via a clamp-binding motif (CBM) at the poly-
merase’s C-terminus (20,21). � is a head-to-tail dimer with
both monomers presenting a protein-binding cleft on the
same face, inspiring the proposal that it serves as a molec-
ular ‘toolbelt’ by simultaneously binding a replicative poly-
merase and a TLS polymerase to facilitate rapid exchange
(22). This exchange may also occur between polymerases
at a single cleft involving secondary polymerase–clamp (23)
or polymerase–polymerase interactions (24). An alternative
model is one where a single polymerase occludes binding of
others, requiring the full dissociation of one followed by as-
sociation of another from solution. The precise details of
exchange involving the three TLS polymerases likely reflect
each of their cellular roles and the need to regulate access
to replication intermediates.

We and others have reconstituted competition between
Pol III core and Pol IV during primer extension using bio-
chemical (23,25–27) and single-molecule (28) approaches to
show that both can simultaneously bind � and exchange.
We have also shown that that the exchange of Pol III core
with Pol II was less efficient than with Pol IV (29). Here, we
further clarify the cellular role of Pol II by characterizing
the interactions of Pol II, Pol III core and �, and Pol II–Pol
III core exchange during primer extension and within the
full replisome. These results support the model that Pols II
and III can exchange on a single � dimer, and additionally
show that Pol II has preferential access outside of replica-
tion forks.

MATERIAL AND METHODS

Protein purification

E. coli proteins were purified with published protocols and
were expressed without affinity tags unless otherwise noted:
Pol II, Pol IIC (30) and Pol IV (31); the Pol III holoen-
zyme subunits �, � and �’ (32); � and � (33); � and re-
folded � within the 	 � complex (34); � (35) and �+/�C,
a stable dimer purified from mixed Myc-tagged � and
His6 and heart muscle kinase-tagged �(�5) (36). Pol III
core (���) and clamp loader complex with stoichiometry
� 3��’	 � were isolated from combined subunits by ion ex-
change chromatography (34). Pol III core and � used in gel
filtration experiments were purified with alternative proto-

cols (30,37). The helicase DnaB (38), primase DnaG (39)
and single-stranded DNA-binding protein SSB (40) were
also purified as previously described.

Characterization of protein interactions by size-exclusion
chromatography

Gel filtration experiments were conducted using a Superose
12 10/300 column (GE Healthcare) equilibrated in Buffer A
(20 mM HEPES [pH 7.5], 0.5 mM EDTA, 150 mM NaCl).
Samples consisting of the indicated proteins (Pol II, Pol III
core and/or �, 1.78 nmol each in 300 
L; see legend of
Figure 1) were incubated at room temperature for 10 min
prior to Superose 12 filtration. Each Superose 12 filtration
experiment was performed in duplicate. Aliquots of each
250 
L Superose 12 fraction were electrophoresed in 12%
SDS-PAGE gels, transferred to a polyvinylidene difluoride
(PVDF) membrane using the Trans-Blot Turbo system (Bio
Rad), and processed as a western blot using a polyclonal Pol
II antibody (1:10,000 dilution), generated by Sigma by in-
jecting His-tagged Pol II into New Zealand White rabbits,
and a secondary horseradish peroxidase goat anti-rabbit an-
tibody (Bio-Rad, 1:50,000 dilution). Pol II was imaged us-
ing a ChemiDoc MP (Bio-Rad), equipped with Image Lab
Software version 5.2.1. The total amount of Pol II present
in each fraction was determined using the quantity tool fea-
ture of the Image Lab software; the mean plus or minus the
range of these values between the replicates is reported.

Single-molecule polymerase exchange experiments

Single-molecule flow stretching experiments were per-
formed as previously described (28). Briefly, 7249 nu-
cleotide M13mp18 (New England Biolabs) single-stranded
(ss) DNA was linearized at the SalI restriction site and
end-labeled with 5′-digoxigenin and 3′-biotin-containing
oligonucleotides. M13 substrates were attached by one end
to the streptavidin-coated surface of a custom microflu-
idic flow cell, and on the other to a 2.8 
m diameter, anti-
digoxigenin-coated paramagnetic bead.

Laminar flow was used to exert a ∼3 pN force on the
bead and, therefore, uniformly throughout the DNA tether.
At this force, ssDNA is entropically coiled and double-
stranded (ds) DNA is nearly extended to its crystallo-
graphic length, a length contrast that allows for observa-
tion of DNA synthesis. As the primer is extended, the DNA
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molecule under tension lengthens, which can be tracked
by observing the motion of the attached bead. Beads were
imaged by dark-field microscopy through a 10X objective
(Olympus) with a QIClick CCD camera (Q-Imaging).

Primer extension reactions were performed in replication
buffer (50 mM HEPES-KOH [pH 7.9], 12 mM Mg(OAc)2,
80 mM KCl, 0.1 mg mL−1 BSA) with 5 mM DTT, 1 mM
ATP, 760 
M dNTPs, 15 nM clamp loader complex (with
stoichiometry � 3��’	 � ), 30 nM clamp (� or �+/�C, as
dimers and Pol II and/or Pol III core at the indicated con-
centrations. Primer extension experiments omitted SSB to
maximize the length contrast between ssDNA and dsDNA
under force. Reactions were observed for 2750 frames at 2
Hz and recorded using the MicroManager software pack-
age (www.micro-manager.com).

Single-molecule data analysis

The positions of individual beads were fit to 2D Gaussians
and tracked in movies with Diatrack (Semasopht). A rep-
resentative immobile bead was used to subtract drift uni-
formly from all tethers, and trajectories of bead displace-
ment in nanometers (nm) were converted into the number of
base pairs (bp) synthesized using the calibration factor 3.9
bp nm−1. Primer extension was defined as single or multi-
step motion in the direction of flow. Rapid jumps perpendic-
ular to the flow were interpreted as the bead sticking or un-
sticking to the surface and those trajectories were excluded.

Synthesis trajectories were fit to segmented lines with cus-
tom optimization code written in MATLAB. For synthesis
steps, the processivity (the amount of primer extension per
binding event) was defined as the rise of the step, and the
rate was defined as the slope. To be determined significant,
synthesis steps were required to have a rise of greater than
3� of the noise, determined for each trajectory individually,
but typically ∼200 bp. All other segments were defined as
pauses.

A cutoff of 45 bp s−1 was used in experiments to distin-
guish significantly processive events as either Pol II (slower)
or Pol III (faster). This cutoff captured 93% of Pol III
events and 94% of Pol II events in experiments with each
polymerase alone. Pauses between events by different poly-
merases were defined as the time of exchange; if no such
pause resulted from trajectory fitting, the time was defined
to be zero. Exchange time data sets were compared using
the two-sided Wilcoxon test (using the MATLAB function
ranksum). The Bonferroni correction was used for multiple
sample comparison where applicable. Distributions for pro-
cessivities, rates, and pauses were normalized and presented
as probability densities by dividing the raw counts in each
bin by the total summed counts and the bin width. Where
applicable, fits to single exponentials were made. In experi-
ments with Pol II alone, the first bin of the processivity and
pause distributions were excluded from exponential fits due
to undersampling below the experimental spatial resolution
(for a more detailed discussion, see (28)).

Rolling circle synthesis experiments

A rolling-circle dsDNA template was prepared as previ-
ously described using T7 DNA polymerase (New England

Biolabs) to extend a tailed oligonucleotide primer annealed
to M13mp7(L2) ssDNA, synthesizing the complementary
strand and generating a fork structure (41). Substrates were
purified with phenol/chloroform extraction. Rolling-circle
replication reactions with the E. coli replisome were per-
formed as previously described (42), with: 30 nM DnaB (as
hexamer), 40 nM Pol III core, 6.75 nM � 3��’	 � , 30 nM �
(as dimer), 600 nM DnaG and 500 nM SSB (as tetramer);
60 
M dNTPs supplemented with �-32P-labeled-dATP, 250

M UTP, GTP and CTP, and 1 mM ATP.

The Pol III replisome was loaded onto the fork structure
by mixing Pol III core, �, clamp loader and helicase with
dCTP, dGTP, ATP and 375 pM DNA substrate and incu-
bating at 37◦C for 5 min. Synthesis at 37◦C was initiated by
adding the dATP and dTTP, SSB and primase. Ten seconds
after initiation, the indicated concentrations of Pol II or Pol
IV were added. Reactions were quenched after 10 min by
adding 25 mM EDTA and replication products were sepa-
rated on a denaturing alkaline agarose gel (0.6%). The dried
gel was exposed to a phosphor screen and imaged with a
Personal Molecular Imager. The image displayed in Figure
8 is representative of two experiments.

RESULTS AND DISCUSSION

Detection of a Pol II–Pol III–� ternary complex

To determine if Pol II, the Pol III core and � can form a
complex, we incubated equimolar quantities of the three
proteins in different combinations and isolated the result-
ing complexes with size-exclusion chromatography. Probing
with a specific Pol II antibody allows for sensitive detec-
tion in dilute fractions (Figure 1). Coomassie blue staining
was also used to verify protein co-migration (Supplemen-
tary Figure S1).

In isolation, the majority of Pol II elutes in fractions 50–
52, while when incubated together, Pol II and � elute to-
gether in earlier fractions, indicative of a higher molecular
weight complex. A comparison to standards suggests that
Pol II and � are in a 1:1 complex (Supplementary Figure
S2), in agreement with surface plasmon resonance experi-
ments (43). When mixed with the Pol III core in the absence
of �, a small shift in Pol II mobility occurs (33.8 ± a range
between replicates of 0.6% in fractions 44–49), suggesting a
low-affinity interaction between the two polymerases; how-
ever, when � was added, the shift is larger and more strik-
ing (61.7 ± 12.4% within fractions 41–49), corresponding
to co-migration of Pol II with the Pol III–� complex (Sup-
plementary Figure S1).

Rapid exchange of Pol II and Pol III bound to a single � dimer

Although these data demonstrate a novel ternary complex
of Pol II, Pol III core and �, they do not necessarily sup-
port the model that �-mediated polymerase exchange oc-
curs during DNA synthesis. In addition to a high-affinity �-
binding CBM within its � polymerase subunit, Pol III has
a second, lower affinity CBM in its proofreading subunit,
� (44–46). This second CBM is not required for processive
Pol III synthesis, but it increases its processivity and rate.
This has led to a proposed model that the Pol III core binds
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Figure 2. (A) A single-molecule primer extension assay uses the differential extension of ssDNA and dsDNA molecules under tension to observe DNA
synthesis. Schematic is adapted from (28). (B) Synthesis by Pol II or Pol III core on individual molecules, shown here in example trajectories, occurs in
processive events interspersed by pauses.

Figure 3. Primer synthesis by individual Pol II molecules. (A) The distri-
bution of the processivity of synthesis steps, fit to a single exponential with
a constant of 310 bp (95% confidence bounds: 250 bp, 410 bp). The first
bin was excluded from the fit due to undersampling below the experimen-
tal spatial resolution (see Methods). (B) Rate distribution for steps, with
mean and standard error of the mean (s.e.m.).

both clefts on the � dimer until a lesion-induced stall, af-
ter which the �–� contact is broken, allowing for TLS poly-
merase access to the clamp (45). Alternatively, TLS poly-
merases could associate with the clamp or the Pol III core
directly and capture a �-binding cleft during synthesis, al-
lowing for a more dynamic mechanism of exchange.

To directly test these models for exchange between Pol
II and Pol III core, we used a single-molecule flow stretch-
ing assay that we have previously used to study synthesis
by Pol IV and Pol III core, and exchange between the two
(28). In this assay, primed ssDNA templates are coupled to
micron-scale beads within a microfluidic flow cell (Figure
2A). Laminar flow is used to exert a constant, ∼3 pN force

on the bead which extends the ssDNA tether. The differ-
ential extension of ssDNA and dsDNA at this force results
in lengthening of the tethers during primer extension, which
is measured for individual molecules by observing bead dis-
placement in dark-field microscopy.

Primer extension by Pol II or Pol III core individually in
the presence of � loaded by the clamp loader occurs in pro-
cessive synthesis steps interspersed by pauses (Figure 2B).
The processivity (∼300 bp) and rate (19.5 bp s−1 on average)
of Pol II (Figure 3) are in agreement with bulk biochemical
measurements of primer extension (20). A direct compari-
son to an equivalent single-molecule analysis of Pol IV (28),
and bulk experiments with Pol V (47), further reveals that
Pol II is the fastest E. coli translesion polymerase, although
all three are significantly slower than Pol III core, which can
extend a primer at ∼220 bp s−1 (28).

Pauses observed between processive synthesis steps in
single-molecule primer extension represent polymerase dis-
sociation from � and the diffusion-limited recruitment of
a new polymerase from solution, for both Pol III (28,34)
and Pol II (Supplementary Figure S3). The timescale of
exchange between Pol II and III should also be diffusion-
limited, unless the two polymerases associate within a Pol
II–Pol III core–� complex prior to exchange. In the lat-
ter scenario, the exchange timescale would likely be much
faster, limited by the conformational dynamics of exchange.

To distinguish between these two models, we measured
the timescale of exchange between Pol II (15 nM) and Pol
III core (5 nM), concentrations at which exchange between
the two polymerases readily occurs (Figure 4). The ratio of
the concentrations, which influences competition between
the two polymerases, was chosen to match the ratio in nor-
mal, replicating cells (48), but absolute concentrations were
reduced by roughly fivefold so the diffusion-limited associa-
tion of each polymerase from solution could be clearly mea-
sured. These diffusion times were determined by measur-
ing the pause lengths in experiments with each polymerase
alone and fitting to an exponential distribution (Figure 5A
and B). That the association of Pol III core is faster despite a
lower polymerase concentration likely reflects an increased
association rate of Pol III (6.8 × 104 M−1 s−1, for the � sub-
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Figure 4. Examples of exchange between Pol III core (5 nM) and Pol II (15 nM) observed during synthesis on individual DNA molecules. Examples of
exchange times between events by different polymerases are also highlighted.

Figure 5. Quantification of exchange supports the toolbelt model for Pol II and Pol III core. Exchange by (A) Pol II (15 nM) or (B) Pol III alone (5 nM)
represents dissociation of a polymerase followed by the diffusion-limited association of a new polymerase. Exchange timescales from (C) Pol III to Pol II
or (D) Pol II to Pol III at matched concentrations are more rapid (P < 0.001), indicating �–mediated exchange.

unit) compared to Pol II (3.8 × 104 M−1 s−1) for � clamp
binding (36,43).

In comparison to the diffusion timescale of Pol II (Figure
5A), the timescale of exchange from Pol III to Pol II (Figure
5C) was significantly faster (P < 0.001), with the vast ma-
jority of exchange occurring in less than 10 s. These rapid
rates prevented an accurate fit to an exponential distribu-
tion, and show that for exchange on most molecules, Pol
II is not being recruited from solution after termination of
synthesis by Pol III core. Similarly, the second half of the
exchange reaction, from Pol II back to Pol III, was signif-
icantly faster than the diffusion timescale of Pol III alone
(P < 0.001, Figure 5B versus D), also reflecting a diffusion-
independent mechanism.

To determine if this rapid exchange involves Pol II asso-
ciating at the second cleft of � weakly bound by the Pol III
� subunit, we used a mutant clamp that contains a single-
binding cleft, �+/�C (36). For exchange with �+/�C from
Pol III to Pol II, and from Pol II to Pol III, we found a
significant increase in the timescale (Figure 6) compared
to experiments with wildtype � (P < 0.001), supporting
this model of exchange. Interestingly, the exponentially dis-
tributed exchange times with �+/�C remained faster than
the diffusion-limited timescales. This suggests Pol II may
engage in at least two modes of exchange, with the second
involving capture of the � cleft tightly bound by the Pol III
� subunit.
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Figure 6. In experiments with the single-cleft clamp �+/�C, exchange from (A) Pol III to Pol II and (B) Pol II to Pol III are intermediate between a
diffusion-limited timescale (Figure 5A and B) and the rapid, �-mediated exchange (Figure 5C and D) (P < 0.001 for all comparisons).

Figure 7. Increasing concentrations of Pol II significantly reduce the pro-
cessivity of Pol III (P < 0.01 for 75–300 nM Pol II), indicative of dynamic
processivity between the polymerases. Removing the Pol II cleft-binding
motif in Pol IIC rescues the effect (NS versus Pol III alone). Values repre-
sent means with s.e.m., with sample sizes: 470 (Pol III alone), 848 (with 15
nM Pol II), 142 (30 nM), 38 (75 nM), 95 (150 nM), 209 (300 nM) and 384
(300 nM Pol IIC).

Displacement of Pol III by Pol II in primer extension but not
within the full replisome

Exchange between two polymerases bound in a complex
with � can either occur after the first polymerase terminates
synthesis and fully dissociates from DNA, or through dis-
placement of the first prior to termination of synthesis. In
the latter case, the incoming polymerase gains a ‘foothold’
by binding a secondary binding surface from which it can
capture a common binding site during a transient, partial
dissociation of the replicating polymerase (49). In this sce-
nario, the presence of the second polymerase at the sec-
ondary binding site can potentially lead to the prema-
ture dissociation of the first, reducing its processivity. This
‘dynamic processivity’ has been observed for polymerases
bound to the same helicase within the T4 and T7 replisomes
(50–52), and the capture of a binding cleft on � from Pol III
by Pol IV following its association at a unique binding site
on the � ‘rim’ (23,24,28,53).

To determine if dynamic processivity exists between Pol
III core and Pol II, we performed single-molecule experi-

ments with increasing concentrations of Pol II, simulating
SOS induction. The ability to assign individual synthesis
events to each polymerase allows us to unambiguously de-
termine the effect of Pol II on the processivity of Pol III
core, even as the relative contribution by each polymerase
changes. As was previously shown for Pol IV, Pol II leads to
the reduction of the Pol III processivity in a dose-dependent
manner (Figure 7, P < 0.01). This reduction depends on the
capture of a � cleft from Pol III, as Pol IIC, a mutant lack-
ing the CBM, does not significantly affect the processivity
distribution. As this mode of exchange disrupts Pol III syn-
thesis, it likely represents capture of a � cleft bound by Pol
III �, which is critical for synthesis (54).

To determine if Pol II has the ability to displace the fully
reconstituted Pol III holoenzyme, we used a rolling-circle
synthesis assay. This approach involves pre-loading Pol III
core, �, the clamp loader complex � 3��’	 � , and the DnaB
helicase onto a purified rolling-circle M13 template, con-
structed by synthesizing the complementary strand with T7
DNA polymerase using a tailed primer to generate a fork
structure (41). After pre-loading, rolling-circle synthesis is
initiated by adding nucleotides, including �-32P-labeled-
dATP, primase, and SSB; in the absence of TLS poly-
merases, Pol III rapidly makes several revolutions around
the circular template, generating long leading strand prod-
ucts that are visualized following alkaline agarose gel elec-
trophoresis. A DNA ladder was used to determine that the
leading strand products were in excess of 25 kilobase pairs
(kb), or more than two revolutions around the rolling-circle
substrate. A template band at ∼7 kb is the result of insertion
by Pol III on a fraction of substrates that were incompletely
filled in by T7 polymerase.

Adding Pol IV to the reaction 10 s after Pol III initia-
tion inhibits synthesis of long leading strand products in a
dose-dependent manner; in contrast, the Pol III replisome
is largely resistant to inhibition by Pol II (Figure 8). A study
using a minicircle template also showed that Pol IV is more
efficient than Pol II at inhibiting Pol III synthesis (55), al-
though the lack of inhibition by Pol II in this assay is more
striking. The authors also demonstrated that the rate of Pol
II is not increased in the presence of the helicase, which elim-
inates the possibility that Pol II and Pol III synthesize at the
same rate in the context of the replisome.
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Figure 8. The fully reconstituted replisome is resistant to disruption by Pol II, but not Pol IV. Rolling circle replication by the Pol III holoenzyme is initiated,
the indicated TLS polymerase is added 10 s later, and reactions are quenched after 10 min. Concentrations of polymerase added (left to right) for (A) Pol
IV are: 0, 39, 78, 156, 312, 625, 1250 and 2500 nM; and for (B) Pol II: 0, 23, 47, 94, 188, 375, 750 and 1500 nM. (C) Quantification of the leading strand
product, normalized to the intensity in the absence of challenging TLS polymerase.

While the rolling-circle assay cannot observe association
of Pol II with the holoenzyme and stochastic exchange
events, it shows that displacement of Pol III by Pol II is more
strongly blocked than displacement by Pol IV in the con-
text of coordinated synthesis within a replication fork. In
contrast, displacement of Pol III core in primer extension
experiments by either TLS polymerase occurs with compa-
rable efficiencies (Figure 7 and (28)). These data are also
consistent with the result that a roughly equivalent level of
overexpression of Pol IV, but not Pol II, impedes growth in
the strain lacking the Rep helicase, which makes cells more
sensitive to replisome stalling (29).

Potential mechanisms of polymerase exchange and regulation

We have shown that Pols II and III form a complex with
a single � dimer, a binding mode that promotes rapid ex-
change during primer synthesis. Our data could support
several potential mechanisms (Figure 9). First, Pol II could
capture a binding cleft on � from the Pol III � subunit prior
to exchange, which is supported by slower exchange kinet-
ics observed with the single-cleft clamp, �+/�C. However,
�+/�C does not fully eliminate rapid exchange, suggesting
that Pol II can also capture the cleft bound by the Pol III
polymerase subunit, �. A direct interaction between Pol II
and Pol III core, suggested by our gel filtration data, or an
as-yet-undiscovered secondary binding site on �, analogous
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Figure 9. Potential mechanisms of exchange of Pol II with Pol III core
on �. Pol II competes with the Pol III subunit � directly for a �-binding
cleft (top), or after an initial association with the Pol III core (middle) or a
secondary binding site on � (bottom) prior to the handoff. Exchange may
also occur by analogous mechanisms with the more strongly bound Pol III
� subunit. The small Pol III subunit �, which binds to �, is not shown for
clarity.

to the rim of the � dimer that is bound by Pol IV, could posi-
tion Pol II to capture either � cleft and exchange with Pol III
core. Detailed structural studies that map these interactions
are needed to further clarify the mechanism of exchange.

Increasing concentrations of Pol II lead to the displace-
ment of Pol III from primer extension reactions, suggesting
that this may represent an increasing occupancy of Pol II at
a lower affinity secondary binding site of the Pol III core–
� complex. Binding at a secondary site could give Pol II a
‘foothold,’ from which it would be able to strip Pol III off
the clamp through direct competition for common binding
sites during transient dissociations, in particular the critical
interaction of the Pol III � subunit with the binding cleft of
�. Competition with Pol III for binding of this cleft would
explain the requirement of the Pol II CBM.

In contrast, replication by Pol III within the full repli-
some significantly attenuates displacement by Pol II. Con-
sistent with this observation, TLS by Pol II is inefficient in
the presence of the stalled Pol III holoenzyme (56). This
suggests that interactions with the helicase and the clamp
loader complex within the full replisome that are absent in
primer extension experiments either occlude secondary Pol
II binding sites, or stabilize Pol III against displacement that
could occur upon exchange. In a striking contrast, Pol IV re-
mains able to displace Pol III despite a ∼15-fold lower affin-
ity for � (43) and can readily carry out TLS in the context of
the replisome (27,56). This, plus the longer time needed for
expression and assembly of Pol V (57), argues that Pol IV

has priority over other TLS polymerases for access to the
replisome immediately following SOS induction.

Although Pol II may be excluded from the full replisome,
there are other cellular contexts when it may exchange with
Pol III. The Pol III primer extension reactions described
here resemble incomplete Okazaki fragments that are pre-
maturely released from the replisome before the termination
of synthesis. Premature Okazaki fragment release can either
occur when Pol III encounters a lesion on the lagging strand
(58), or through stochastic loop release in the absence of a
roadblock (59,60). A Pol III core–� complex at the result-
ing ssDNA gap could then exchange with Pol II or other
TLS polymerases. That Pol II preferentially exchanges with
Pol III within released, incomplete Okazaki fragments but
not within an active replication fork is consistent with the
observation that Pol II preferentially influences the fidelity
on the lagging strand (19). In addition to structural studies,
further clarification of the role of Pol II requires increas-
ingly complex reconstitutions of polymerase exchange, and
single-molecule imaging of Pol II dynamics.
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